The effects of buffer and temperature feedback on the oceanic uptake of CO2

نویسندگان

  • Chuixiang Yi
  • Peng Gong
  • Ming Xu
  • Ye Qi
چکیده

The feedback between climate and carbon cycle systems is critical to the prediction of future CO2 concentration in the atmosphere and the capacity of the oceans to take up CO2 from the atmosphere. We calculated the magnitudes of the potential feedback between the increase of atmospheric CO2 concentration, the carbonate chemistry of the oceans (via a buffer factor), and the global temperature. We find that the magnitude of the buffer feedback depends strongly on the level of the dissolved inorganic carbon (DIC) in the oceans and increases rapidly with the increase of the atmospheric CO2 concentration. The buffer feedback would result in an increase of 95 ppm in the atmospheric CO2 concentration and a decrease of 236 GtC absorbed by the oceans from the atmosphere between year 2000 and 2100 under the Intergovernmental Panel on Climate Change (IPCC) scenario IS92e. By coupling our buffer feedback model with a global energy balance model, we find that global mean temperature increased 0.65 C from 1860 to 1990, which agreed well with the recorded value of 0.61 C. However, the ocean carbonate chemistry is quite insensitive to global temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The viscosity effect on marine particle flux: A climate relevant feedback mechanism

Oceanic uptake and long-term storage of atmospheric carbon dioxide (CO2) are strongly driven by the marine “biological pump,” i.e., sinking of biotically fixed inorganic carbon and nutrients from the surface into the deep ocean (Sarmiento and Bender, 1994; Volk and Hoffert, 1985). Sinking velocity of marine particles depends on seawater viscosity, which is strongly controlled by temperature (Sh...

متن کامل

Thermodynamical Studies of Irreversible Sorption of CO2 by Wyodak Coal

Differential scanning calorimetry (DSC), temperature programmed desorption mass spectrometry (TPD-MS) and small angle neutron scattering (SANS) were used to investigate CO2 uptake by the Wyodak coal. Adsorption of carbon dioxide on Wyodak coal was studied by DSC. The exotherms evident at low temperatures are associated with the uptake of CO2 suggesting that carbon diox...

متن کامل

Response of the global carbon cycle to human-induced changes in Southern Hemisphere winds

[1] An Earth System model is used to explore the response of the oceanic and terrestrial carbon sinks to strengthening and poleward shifting of the extratropical Southern Hemisphere winds, which is a robust feature of climate models’ response to greenhouse gas forcing through the 20th and 21st centuries. We find that under time-varying CO2 emissions poleward intensifying Southern Hemisphere win...

متن کامل

Carbon dioxide cycling and implications for climate on ancient Earth

The crustal Urey cycle of CO2 involving silicate weathering and metamorphism acts as a dynamic climate buffer. In this cycle, warmer temperatures speed silicate weathering and carbonate formation, reducing atmospheric CO2 and thereby inducing global cooling. Over long periods of time, cycling of CO2 into and out of the mantle also dynamically buffers CO2. In the mantle cycle, CO2 is outgassed a...

متن کامل

Effect of Oral Corrective Feedback on Iranian EFL Learners’ Phonological Uptake and Retention

This study investigates the effect of four types of oral corrective feedback, namely, explicit elicitation, implicit elicitation, explicit recast and implicit recast on the most commonly mispronounced phonological features among Iranian EFL learners through immediate uptake and retention. Five classes were randomly categorized into four experimental groups and one control group, each with 18 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001